High Throughput Bio-Printing with Individualized Piezoelectric Ejectors

Huangpin Ben Hsieh
Palo Alto Research Center
3333 Coyote Hill Rd.
Palo Alto, CA 94304, USA
ben@parc.com

Bio-Printing and Bio-Patterning Workshop
September 27-28, 2004, Manchester, UK.
Commercial Impact at PARC

- **Inventions in nearly every Xerox product**
 - Laser Printing, Laser Diodes, Dual-beam Laser Diodes
 - DocuPrint NPS (1993-current)
 - Web XPress services infrastructure – delivered via cross-organizational collaboration
 - Color RIP for DocuColor 60
 - Scheduling software for IGen3

- **Seeded the Valley**
 - 8 companies based on early PARC research: 3Com, Adobe, VLSI, and KOMAG

- **19 Spin-offs since 1980**
 - 1983: Spectra Diode Laboratories, Inc. – acquired by JDS Uniphase in $41 Billion merger
 - 1985: Synoptics Communications, Inc. – became Bay Networks, acquired by Nortel in 1998
 - 2000: ContentGuard – digital property rights management, purchased by Microsoft.
 - 2001: Gyricon Media Inc. – Macy’s and Dow Jones as lead customers for retail signage

- **Licensing**
 - Dragon collaboration with Sun Microsystems on SPARC Station's multi-processor architecture
 - 3D Visualization techniques licensed to Microsoft Corporation
Biomedical Sciences at PARC

• Leverage PARC technical competencies
 – Ultra Small Drop Control
 – MEMS / Electronics / Applied Physics
 – Information Sciences

• Partner for life science competencies
 – Scripps Research Institute domain knowledge and industry contacts
 – Scripps-PARC Institute for Advanced Biomedical Science www.scrippsparc.com
 – Collaborate in securing external funding
 – Attack big problems
Biomedical Science Efforts

- **Bio-Printing¹**: Individualized Piezoelectric Ejectors
 - Low cost, high volume DNA arrays
- **Universal Assay²**: Enthalpy Array
 - High throughput screening without assay development
- **Rare Cell³**: Fiber Array Scanning Technology
 - Early stage cancer detection and fetal analysis
- **Image Analysis⁴**
 - Protein crystal ID
 - CryoEM Sample ID
- **Mass Spec Data Analysis⁵**
- **Bio-Agent Concentration & Detection⁶**

6. ARO-JSAWM contracts: DAAD19-03-0116, W911NF-04-C-0034
Printing Technologies

Acoustic Single Ejector
- Micro-pipetting
- Printed organic electronics
- Drug inhaler

Acoustic Multi-Ejector Printhead
- Photofinishing
- LCD color filter deposition
- Printing on pills

Piezo Single Ejector
- Biological micro-arrays
- Printed organic electronics
- Micro-pipetting

Piezo Multi-Ejector Printhead (OPB/Tektronix)
- Office documents with solid ink
- Printed organic electronics
- LCD color filter deposition
- Decorative & packaging printing
- Printing on pills

Ballistic Aerosol Marking
- Powder deposition/processing
Piezoelectric Single Ejector

- Solve the plumbing problem of traditional inkjet bioprinter
- Eliminate cross-contamination
- Break the practical limit of number of print heads
- Provide low cost, high throughput solutions
Fluid Core of Single Ejector

Reservoir Volume=76µl

- Main Reservoir
- Aperture=76µm
- Fill Hole
- Compression Chamber
- Purge Reservoir
- Purge Hole
- Piezo Diaphragm
- Refill Ducts Behave Like Check Valves

Parc
Palo Alto Research Center
PARC’s Piezoelectric Ejector Technology

- Printing system with multiple fluids printed simultaneously
 - Individual piezo ejector for each fluid
 - Many piezo ejectors or fluids
 - All stainless steel construction
 - Non-contact
 - High fluid utilization
 - Reconfigurable
 - Versatile drop control (5pl – 300pl)
 - Prototype system demonstrated

Initial printing system:
 - X-Y scanning
 - Inspections
 - Building block for larger systems
Bioprinter Prototype

- PARC’s deep printing understanding maps well to bio-fluidics:
 - Manipulating drops & images
 - Manufacturing & modeling piezo ejectors
 - Precision motion & sensing systems
Reliable Droplet Ejection

- Counted ≈ 4M drops through 8 apertures
- Videos of drop ejection before and after a 4M drop run
Reliability – Idling in Ambient

Initial State
(surface is clean except for 2 stains from filling)

Ejection after sitting idle at ambient RH for 4 hours:

- RH = 19.2% at 23°C
- BSA/CAPS deposits formed on ejector surface but do not appear to interfere with drop ejection
- No appearance of drop abnormalities

Features Printed after sitting idle at ambient RH for 4 hours:

(Drops per feature varies from 1000 to 10 drops)
Reliability-Idling in Humidity

Initial State
Ejection after sitting idle with RH control for 3 hours
Ejection after sitting idle with RH control for an additional 14 hours

- BSA/CAPS nominal solution

Results:
- Surface around aperture remains clean
- Drop trajectory remains the same
- No appearance of drop abnormalities
Feature Size With Varying Droplet Qty.

Single Ejector #1610
Three strips measured.
BSA with 0.01 % dye.
No Motion
Very circular features.

Drop Size = 73 um
\[y = 76.076 \ln(x) - 13.297 \]

Drop Size = 59 um
\[y = 51.644 \ln(x) + 9.832 \]
Feature Size Comparison Before and After Hybridization

Each drop is 74 um diameter = 200 pLiter = 65 fg of probe per drop

Probes are 20 mers long @ 0.325 ug/ml
Bio Materials Successfully Printed

- **Genomic DNA solution (100ng/uL)**
 - viscous, long DNA fiber
 - PCR verified printed DNA
- **Aqueous DMSO (5- 50%)**
 - low surface tension
 - at 4°C, 22°C, 37°C
- **Oligonucleotide solutions**
 - arrays hybridized successfully
- **BSA and Human IgG protein (1mg/ml)**
- **Human cell line TIB180 (10µm)**
 - at 4°C, 22°C, 37°C
 - cell settlement occurred over time
 - agitation (ultrasound) could reduce settlement
Bio-Array Printing Applications

• Clinical
 – high volume, low cost: $10
 – medium density: 100 to 1000 features
 – diagnostic, metabolic, reproductive, forensic

• Research
 – low volume, high cost: $100 to $500
 – high density: 1000 to 10,000 features
 – population arrays, drug discovery, customized
Strip or Array Production

Web Fed, Dual Speed, 500 um Feature Pitch, 27x46mm Strip

Arrays per 8 Hr Shift vs. Droplets per Feature

- 96 features per strip
- 384
- 1536

XY Platen, Dual Speed, 500 um Feature Pitch, 27x46mm Strip

Arrays per 8 Hr Shift

- 96 features per strip
- 384
- 1536
Companies with Micro Droplet Technologies for **Array** Generation
(from 2002 literature)

Legend
Solid: contact, Open: non-contact
red: quill pin
cyan: piezoelectric
blue: micro dosage head
green: solid pin
orange: micro solenoid valve
Symbol Size ~ minimum drop size

Affy: density: >250k
Agilent: density: up to 22575/slide

Density (Features per Strip)

Production (Arrays per Shift)

red lines indicate dead volume in nano liters
Future Work

• “Image” (feature) quality & reliability
 – In many ways, conventional images demand more accurate printing than bio applications.
 – Orderly, consistent bioarrays are within reach, but for large arrays and lots of ejectors, concerns are:
 • mechanical issues like alignment
 • set up time
 • droplet trajectory changes due to meniscus changes
• Automatic filling station for precious fluids
• Inexpensive ejectors: injection molding
• Extend ejector performance
• Materials studies
• System architecture studies
Injection Molded Plastic Ejector
96 Ejector Array
System Architectures

- XY Platen, Auto Fill
- XY Platen, Manual Fill
- Web, Auto Fill, Auto Tune, Auto Tune, PreRacked
- Web, Manual Fill
Potential Applications

• Bio-defense
 – printing small arrays in large quantity
 – example arrays include bio-agents such as microbial genomes, toxin Abs, viruses, or chemical arrays
 – inexpensive

• On-demand printing and dispensing of biomaterials
 – library of bio-molecules stored in ejectors
 – computerized, automated pick-and-print

• Handheld nano-liter dispenser
• Protein arrays for research and diagnostics
• Tissue, organ, or live cell printing
...Continuous Innovation

Thank you! Questions?

www.parc.com