home › event - improving performance of topic models by variable grouping

EVENT:

Improving performance of topic models by variable grouping
Conferences & Talks

 

description

Topic models have a wide range of applications, including modeling of text documents, images, user preferences, product rankings, and many others. However, learning optimal models may be difficult, especially for large problems. The reason is that inference techniques such as Gibbs sampling often converge to suboptimal models due to the abundance of local minima in large datasets. In this paper, we propose a general method of improving the performance of topic models. The method, called 'grouping transform,' works by introducing auxiliary variables which represent assignments of the original model tokens to groups. Using these auxiliary variables, it becomes possible to re-sample an entire group of tokens at a time. This allows the sampler to make larger state space moves. As a result, better models are learned and performance is improved. The proposed ideas are illustrated on several topic models and several text and image datasets. We show that the grouping transform significantly improves performance over standard models.

 

upcoming events   view all 

Automated Data Integration
Eric Huang, Author, Saigopal Nelaturi
27 October 2014
Conferences & Talks  

Global Competitiveness: The Role of Innovation and Productivity
Stephen Hoover, CEO, PARC
27 October 2014 | Toronto, Canada
Conferences & Talks  

The Internet of Everything
Stephen Hoover, CEO, PARC
28 October 2014 | Toronto, Canada
Conferences & Talks  

Open Forum: Cities and the Digital Frontier
Mike Steep
30 October 2014
George E. Pake Auditorium, PARC | Palo Alto, CA

Churchill Club