home › event - finding credible information sources in social networks based on content and social structure

EVENT:

Finding credible information sources in social networks based on content and social structure
Conferences & Talks

 

description

A task of primary importance for social network users is to decide whose updates to subscribe to in order to maximize the relevance, credibility, and quality of the information received. To address this problem, we conducted an experiment designed to measure the extent to which different factors in online social networks affect both explicit and implicit judgments of credibility. The results of the study indicate that both the topical content of information sources and social network structure affect source credibility. Based on these results, we designed a novel method of automatically identifying and ranking social network users according to their relevance and expertise for a given topic. We performed empirical studies to compare a variety of alternative ranking algorithms and a proprietary service provided by a commercial website specifically designed for the same purpose. Our findings show a great potential for automatically identifying and ranking credible users for any given topic.

 

upcoming events   view all 

Making Robots Work to Help us Work Remotely
Leila Takayama, Susan Herring, Dallas Goecker, Victoria Bellotti
19 October 2017 | George E. Pake Auditorium, PARC
PARC Forum  

Innovation and AI
Tolga Kurtoglu
5 November 2017 | Lisbon, Portugal
Conferences & Talks  

Leveraging RF power for flexible-hybrid electronics
6 November 2017
Conferences & Talks  

The Future of Electronics
Mike Kuniavsky, Janos Veres
14 November 2017 | San Francisco, CA
Conferences & Talks  

Printed Electronics USA 2017 - Visit PARC's Booth #X22
Ross Bringans, Markus Larsson, Nicholas Meehan, Janos Veres
15 November 2017 - 16 November 2017 | Santa Clara, CA
Conferences & Talks