Bayesian network model for predicting insider threats

Details

2013 May 24; San Francisco, CA USA.

Speakers

Brdiczka, Oliver
Jianqiang Shen
Event

Bayesian network model for predicting insider threats

This paper introduces a Bayesian network model for the motivation and psychology of the malicious insider. First, an initial model was developed based on results in the research literature, highlighting critical variables for the prediction of degree of interest in a potentially malicious insider. Second, a survey was conducted to measure these predictive variables in a common sample of normal participants. Third, a structural equation model was constructed based on the original model, updated based on a split-half sample of the empirical survey data and validated against the other half of the dataset. Fourth, the Bayesian network was adjusted in light of the results of the empirical analysis. Fifth, the updated model was used to develop an upper bound on the quality of model predictions of its own simulated data. When empirical data regarding psychological predictors were input to the model, predictions of counterproductive behavior approached the upper bound of model predictiveness.

Additional information

Focus Areas

Our work is centered around a series of Focus Areas that we believe are the future of science and technology.

FIND OUT MORE
Licensing & Commercialization Opportunities

We’re continually developing new technologies, many of which are available for Commercialization.

FIND OUT MORE
News

PARC scientists and staffers are active members and contributors to the science and technology communities.

FIND OUT MORE