Improving performance of topic models by variable grouping
Details
Barcelona, Spain. Date of Talk: 7/20/2011
Speakers
Evgeniy Bart
Event
Improving performance of topic models by variable grouping
Topic models have a wide range of applications, including modeling of text documents, images, user preferences, product rankings, and many others. However, learning optimal models may be difficult, especially for large problems. The reason is that inference techniques such as Gibbs sampling often converge to suboptimal models due to the abundance of local minima in large datasets. In this paper, we propose a general method of improving the performance of topic models. The method, called `grouping transform', works by introducing auxiliary variables which represent assignments of the original model tokens to groups. Using these auxiliary variables, it becomes possible to resample an entire group of tokens at a time. This allows the sampler to make larger state space moves. As a result, better models are learned and performance is improved. The proposed ideas are illustrated on several topic models and several text and image datasets. We show that the grouping transform significantly improves performance over standard models.
Additional information
Focus Areas
Our work is centered around a series of Focus Areas that we believe are the future of science and technology.
Licensing & Commercialization Opportunities
We’re continually developing new technologies, many of which are available for Commercialization.
News
PARC scientists and staffers are active members and contributors to the science and technology communities.