Integrated parallel printing systems with hypermodular architecture


2011 January 23-27; San Francisco, CA.


Biegelsen, David K.
Do, Minh B.
Duff, David G.
Eldershaw, Craig
Fromherz, Markus P. J.
Hindi, Haitham
Preas, Bryan T.
Swartz, Lars Erik
Zhou, Rong

Integrated parallel printing systems with hypermodular architecture

We describe here a system consisting of multiple, relatively inexpensive marking engines. The marking engines are interconnected using highly reconfigurable paper paths. The paths are composed of hypermodules (bidirectional nip assemblies and sheet director assemblies) each of which has its own computation, sensing, actuation, and communications capabilities. Auto-identification is used to inform a system level controller of the potential paths through the system as well as module capabilities. Motion control of cut sheets, which of necessity reside physically within multiple hypermodules simultaneously, requires a new abstraction, namely a sheet controller which coordinates control of a given sheet as it moves through the system. Software/hardware co-design has provided a system architecture that is scalable without requiring user relearning. Here the capabilities are described of an exemplary system consisting of 160 modular entities and four marking engines. The throughput of the system is very nearly four times that of a single print engine.

Additional information

Focus Areas

Our work is centered around a series of Focus Areas that we believe are the future of science and technology.

Licensing & Commercialization Opportunities

We’re continually developing new technologies, many of which are available for¬†Commercialization.


Our scientists and staffers are active members and contributors to the science and technology communities.