Toward Interactive Relational Learning
Details
Phoenix, AZ USA. Date of Talk: 02/12/2016
Speakers
Ryan Rossi
Zhou, Rong
Event
Toward Interactive Relational Learning
This paper introduces the Interactive Relational Machine Learning (iRML) paradigm in which users interactively de- sign relational models by specifying the various components, constraints, and relational data representation, as well as per- form evaluation, analyze errors, and make adjustments and refinements in a closed-loop. iRML requires fast real-time learning and inference methods capable of interactive rates. Methods are investigated that enable direct manipulation of the various components of the RML method. Visual representation and interaction techniques are also developed for exploring the space of relational models and the trade-offs of the various components and design choices.
Additional information
Focus Areas
Our work is centered around a series of Focus Areas that we believe are the future of science and technology.
Licensing & Commercialization Opportunities
We’re continually developing new technologies, many of which are available for Commercialization.
News
Our scientists and staffers are active members and contributors to the science and technology communities.