Unsupervised Temporal Clustering to Monitor the Performance of Alternative Fueling Infrastructure
Details
Long Beach, CA USA. Date of Talk: 06/10/2019
Speakers
Event
Unsupervised Temporal Clustering to Monitor the Performance of Alternative Fueling Infrastructure
Zero Emission Vehicles (ZEV) play an important role in the decarbonization of the transportation sector. For a wider adoption of ZEVs, providing a reliable infrastructure is critical. We present a machine learning approach that uses unsupervised temporal clustering algorithm along with survey analysis to determine infrastructure performance and reliability of alternative fuels. We illustrate this approach for the hydrogen fueling stations in California, but this can be generalized for other regions and fuels.
Additional information
Focus Areas
Our work is centered around a series of Focus Areas that we believe are the future of science and technology.
Licensing & Commercialization Opportunities
We’re continually developing new technologies, many of which are available for Commercialization.
News
PARC scientists and staffers are active members and contributors to the science and technology communities.