Adversaries and countermeasures in privacy-enhanced urban sensing systems

Details

Event IEEE Systems Journal, Special Issue on Security and Privacy of Complex Systems

Authors

Emiliano De Cristofaro
Technical Publications
June 1st 2013
Modern digital society is increasingly dependent on the availability of massive amounts of information. It relies on the interconnection of heterogeneous components and encompasses assorted actors, entities, systems, and a variety of (often mobile) computing devices. Revolutionary computing paradigms, such as People-Centric Urban Sensing, have focused on the seamless collection of meaningful data from a large number of devices. The increasing complexity of deployed urban systems and related infrastructures, along with the growing amount of information collected, prompts a number of challenging security and privacy concerns. In this paper, we explore a number of scenarios where nodes of an Urban Sensing system are subject to individual queries. In this setting, multiple users and organizations (e.g. infrastructure operators) co-exist, but they may not trust each other to the full extent. As a result, we address the problem of protecting (i) secrecy of reported data and (ii) confidentiality of query interests from the prying eyes of malicious entities. We introduce a realistic network model and study different adversarial models and strategies, distinguishing between resident and non-resident adversaries, considering both randomly distributed and local attackers. For each of them, we propose a distributed privacy-preserving technique and evaluate its effectiveness via analysis and simulation. Our techniques are tunable, trading off the level of privacy assurance with a small overhead increase, and independent from the complexity of the underlying infrastructures. We additionally provide a relevant improvement of data reliability and availability, while relying only on standard symmetric cryptography. The practicality of our proposals is demonstrated both analytically and experimentally.

Citation

De Cristofaro, E.; Di Pietro, R. Adversaries and countermeasures in privacy-enhanced urban sensing systems. IEEE Systems Journal, Special Issue on Security and Privacy of Complex Systems. 2013 June; 7 (2): 311-322.

Additional information

Focus Areas

Our work is centered around a series of Focus Areas that we believe are the future of science and technology.

FIND OUT MORE
Licensing & Commercialization Opportunities

We’re continually developing new technologies, many of which are available for Commercialization.

FIND OUT MORE
News

PARC scientists and staffers are active members and contributors to the science and technology communities.

FIND OUT MORE