Atomic layer deposition of Al2O3 for top-gated organic transistors

Details

Event MRS Spring 2011

Authors

Leah L Lavery
Ana Claudia Arias
Technical Publications
April 27th 2011
Atomic layer deposition (ALD) of thin film high-k oxides has been demonstrated for low voltage thin film transistors (TFT). However, for organic semiconductors, the transistors are based on a bottom-gate architecture. We have developed an oxide growth process for a top-gate transistor architecture for organic thin film semiconductors based on the ALD process, plasma-enhanced as well as thermal. The ALD growth process is self-limiting and this implies that the film thickness is dependent only on the number of deposition cycles. Practically, this creates accurate and uniform conformal thickness control over large areas. Furthermore, thickness control leads to good reproducibility and straightforward scale-up. We will discuss our low temperature (150C) Al2O3 growth process by plasma assisted-ALD compared to the thermal process. Also, oxide characterization as well as top-gated TFT performance will be presented.

Citation

Lavery, L. L.; Arias, A. C. Atomic layer deposition of Al2O3 for top-gated organic transistors. 2011 Materials Research Society Spring Meeting; 2011 April 25-29; San Francisco, CA.

Additional information

Focus Areas

Our work is centered around a series of Focus Areas that we believe are the future of science and technology.

FIND OUT MORE
Licensing & Commercialization Opportunities

We’re continually developing new technologies, many of which are available for Commercialization.

FIND OUT MORE
News

PARC scientists and staffers are active members and contributors to the science and technology communities.

FIND OUT MORE