Classifying foreground pixels in document images

Details

Event International Conference on Document Analysis and Recogntition 2009

Authors

Sarkar, Prateek
Eric Saund
Lin, Jing
Technical Publications
July 26th 2009
We present a system that classifies pixels in a document image according to marking type such as machine print, handwriting, and noise. A segmenter module first splits an input image into fragments, sometimes breaking connected components. Each fragment is then classified by an automatically trained multi-stage classifier that is fast and considers features of the fragment, as well as its neighborhood. Features relevant for discrimination are picked out automatically from among hundreds of measurements. Our system is trainable from example images in which each foreground pixel has a ground-truth label. The main distinction of our system is the level of accuracy achieved in classifying fragments at sub-connected component level, rather than larger aggregate groups such as words or text-lines. We have trained this system to detect handwriting, machine print text, machine print graphics, and noise.

Citation

Sarkar, P.; Saund, E.; Lin, J. Classifying foreground pixels in document images. International Conference on Document Analysis and Recognition. 2009 July 26-29; Barcelona, Spain.

Additional information

Focus Areas

Our work is centered around a series of Focus Areas that we believe are the future of science and technology.

FIND OUT MORE
Licensing & Commercialization Opportunities

We’re continually developing new technologies, many of which are available for Commercialization.

FIND OUT MORE
News

PARC scientists and staffers are active members and contributors to the science and technology communities.

FIND OUT MORE