EsPRESSo: efficient privacy-preserving evaluation of sample set similarity

Details

Event 7th International Workshop on Data Privacy Management (DPM 2012)

Authors

Emiliano De Cristofaro
Technical Publications
September 13th 2012
In today's digital society, electronic information is increasingly shared among different entities, and decisions are made based on common attributes. To address associated privacy concerns, the research community has begun to develop cryptographic techniques for controlled (privacy-preserving) information sharing. One interesting open problem involves two mutually distrustful parties that need to assess the similarity of their information sets, but cannot disclose their actual content. This paper presents the first efficient and provably-secure construction for privacy-preserving evaluation of sample set similarity, measured as the Jaccard similarity index. We present two protocols: the first securely computes the Jaccard index of two sets, the second approximates it, using MinHash techniques, with lower costs. We show that our novel protocols are attractive in many compelling applications, including document similarity, biometric authentication, genetic tests, multimedia file similarity. Finally, we demonstrate that our constructions are appreciably more efficient than prior work.

Citation

De Cristofaro, E.; Blundo, C.; Gasti, P. EsPRESSo: efficient privacy-preserving evaluation of sample set similarity. 7th International Workshop on Data Privacy Management (DPM 2012); 2012 September 13-14; Pisa, Italy.

Additional information

Focus Areas

Our work is centered around a series of Focus Areas that we believe are the future of science and technology.

FIND OUT MORE
Licensing & Commercialization Opportunities

We’re continually developing new technologies, many of which are available for¬†Commercialization.

FIND OUT MORE
News

PARC scientists and staffers are active members and contributors to the science and technology communities.

FIND OUT MORE