Probabilistic model-based diagnosis: an electrical power system case study

Details

Event IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans - Special issue on model-based diagnostics

Authors

Uckun, Serdar
Technical Publications
July 19th 2010
We present in this paper a case study of the probabilistic approach to model-based diagnosis. Here, the diagnosed system is a real-world electrical power system (EPS), i.e., the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the NASA Ames Research Center. Our probabilistic approach is formally well founded and based on Bayesian networks (BNs) and arithmetic circuits (ACs). We pay special attention to meeting two of the main challenges often associated with real-world application of model-based diagnosis technologies: model development and real-time reasoning. To address the challenge of model development, we develop a systematic approach to representing EPSs as BNs, supported by an easy-to-use specification language. To address the real-time reasoning challenge, we compile BNs into ACs. AC evaluation (ACE) supports real-time diagnosis by being predictable, fast, and exact. In experiments with the ADAPT BN, which contains 503 discrete nodes and 579 edges and produces accurate results, the time taken to compute the most probable explanation using ACs has a mean of 0.2625 ms and a standard deviation of 0.2028 ms. In comparative experiments, we found that, while the variable elimination and join tree propagation algorithms also perform very well in the ADAPT setting, ACE was an order of magnitude or more faster.

Citation

Uckun, S. Probabilistic model-based diagnosis: an electrical power system case study. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans - Special issue on model-based diagnostics. 2010 September; 40 (5): 874-885.

Additional information

Focus Areas

Our work is centered around a series of Focus Areas that we believe are the future of science and technology.

FIND OUT MORE
Licensing & Commercialization Opportunities

We’re continually developing new technologies, many of which are available for¬†Commercialization.

FIND OUT MORE
News

PARC scientists and staffers are active members and contributors to the science and technology communities.

FIND OUT MORE