S-shaped double-spring structures for high stiffness and spring height

Details

Event Microelectronic Engineering
Technical Publications
April 21st 2012
Stress-engineered metal films allow the microfabrication of curved beam structures which have been demonstrated for a variety of innovative applications such as interconnect structures, RF coil structures, actuators, and scanning probes. The underlying principle is that a beam structure with a compressive region at the bottom and a tensile region on top is bending away from the substrate surface after a release etching step. Although the beam curvature can be adjusted by the stress gradient within a wide range, the shape of the beam by this approach is basically limited to circular shapes. Therefore, we have developed a double-spring approach with an S-shape side profile. It allows for extreme spring heights and different shapes while still relying on the same stressed-metal base process without additional lithography steps. Using interlocking features and beam overplating, very stiff springs can be fabricated. This presentation introduces the double-spring concept and fabrication. We demonstrate various types of fabricated double-spring structures with and without spring interlocking. The double spring is fabricated using state-of-the-art stressed metal technology whereby the lower beam is pushing upwards and the upper beam is pushing downwards. This results in an S-shape of the upper beam which is mechanically supported by the lower beam. Using this concept, double-spring structures can be created. Our approach allows for nearly vertical spring structures with a spring height nearly equal to the beam length. The two springs can also be interlocked with each other by interlocking features or spring overplating.

Citation

Hantschel, T.; Chow, E. S-shaped double-spring structures for high stiffness and spring height. Microelectronic Engineering. 2012 (in press)

Additional information

Focus Areas

Our work is centered around a series of Focus Areas that we believe are the future of science and technology.

FIND OUT MORE
Licensing & Commercialization Opportunities

We’re continually developing new technologies, many of which are available for Commercialization.

FIND OUT MORE
News

Our scientists and staffers are active members and contributors to the science and technology communities.

FIND OUT MORE