Unsupervised organization of image collections: taxonomies and beyond

Details

Event IEEE Transactions on Pattern Analysis and Machine Intelligence

Authors

Evgeniy Bart
Technical Publications
September 19th 2011
We introduce a nonparametric Bayesian model, called TAX, which can organize image collections into a tree-shaped taxonomy without supervision. The model is inspired by the Nested Chinese Restaurant Process (NCRP) and associates each image with a path through the taxonomy. Similar images share initial segments of their paths and thus share some aspects of their representation. Each internal node in the taxonomy represents information that is common to multiple images. We explore the properties of the taxonomy through experiments on a large (sim 10^4) image collection with a number of users trying to locate quickly a given image. We find that the main benefits are easier navigation through image collections and reduced description length. A natural question is whether a taxonomy is the optimal form of organization for natural images. Our experiments indicate that although taxonomies can organize images in a useful manner, more elaborate structures may be even better suited for this task.

Citation

Bart, E.; Welling, M.; Perona, P. Unsupervised organization of image collections: taxonomies and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2011 November; 33 (11): 2302-2315.

Additional information

Focus Areas

Our work is centered around a series of Focus Areas that we believe are the future of science and technology.

FIND OUT MORE
Licensing & Commercialization Opportunities

We’re continually developing new technologies, many of which are available for Commercialization.

FIND OUT MORE
News

PARC scientists and staffers are active members and contributors to the science and technology communities.

FIND OUT MORE