IIoT System Analytics
IIoT System Analytics
An Innovative Solution for Predictive Maintenance & Beyond
We have developed MOXI™ IIoT System Analytics, a suite of technologies that maximizes systems’ abilities to predict the need for maintenance, repair or improvement and fully automates prompts which allow maintenance professionals to act in a timely manner.
This capability is light years away from non-automated traditional reactive maintenance practices in which a system, part or component fails and a maintenance professional performs the necessary repair or replacement. It’s also a step up from preventive maintenance that’s scheduled based on time elapsed rather than on the need for repair or replacement.
By improving upon these previous solutions via the integration of AI and IIoT technology, MOXI is able to more accurately predict needs, identify appropriate timing for maintenance to reduce costly down time, and integrate these recommendations into an existing workflow.
MOXI enables the transition to reliable predictive maintenance, thus initiating the digital transformation to truly smart, self-aware systems that yield actionable insights about health, safety and performance.
Why MOXI?
ROI Calculator
Applications
Case Studies
How the Technology Works
Why MOXI?
As systems become more complex, technology suites that allow for reliable, predictive condition-based maintenance are more challenging than ever. Schedule-driven maintenance practices can result in expensive and unnecessary inspections early in a system’s life and are insufficient as the system ages and deteriorates. What’s more, the systems supporting traditional maintenance practices have limited accuracy, require extensive training and often result in too many false alarms. This is where MOXI comes into play.
Applying the principles of physics to enhance AI-based predictive systems to 90%+ accuracy, our diversified, agile and experienced research & development team will work as a hub between existing technology providers, engineers & facilities or maintenance teams to develop a fully integrated suite of technology designed to provide:
- Higher Diagnostic and Prognostic Accuracy (90%+)
- Improved Uptime
- Longer System Life
- Valuable Insights for Accurate Long-Term Planning
- Better Scheduling Accuracy
Through accurate sensing, this technology suite uses AI and IIoT technologies most effectively. By accurately detecting anomalies, diagnosing problem points and prescribing necessary action based on the variables that are critical to system health, our technology suite will streamline operations.
ROI Calculator
Developing a business case for the implementation of MOXI is critical to your success. We’ve designed an ROI calculator to help you understand the potential cost-savings and impact of MOXI to your organization.
Applications
Case Studies
We’re helping organizations across industries streamline their operations and reduce costs with the adoption of MOXI. Explore their success stories:
How the Technology Works
Design Excellence from Start to Finish
Key stages of PARC’s MOXI IIoT System Analytics technology suite are:
- Sensing that’s robust enough to yield accurate system data
- Modeling that’s customized and which can simulate adverse conditions and failures the system is designed to prevent
- Condition Monitoring that reliably monitors anomalies from expected system behavior
- Diagnostics that contain efficient reasoning engines which isolate and infer root causes of faults within sub-systems
- Prognostics that use system models and data to probabilistically predict a system’s useful life span
- Actionable Recommendations based on decision-theoretic algorithms to promote accurate planning
PARC’s diverse team of researchers collaborate throughout each stage of this process to produce outcomes with the highest accuracy and fewest false alarms, allowing the system to run smoothly and efficiently.
While each piece of the puzzle is critical to success, MOXI’s team of engineers & researchers have perfected three core elements that inform the process and are essential to producing peak accuracy for each specific system. Explore below to learn more.
Sensing > Modeling > Predicting >
The Art of Sensing
Sensing is all about accuracy. Accurate data points produced from the sensors installed in a system are the essential foundation of a useful IIoT prediction solution.
Our team can work with any sensors already installed within a system, assessing them for the metrics they are measuring and assuring that they are detecting the correct information at a high enough level of accuracy.
What if the sensors are insufficient or a sensing solution is not installed? Don’t worry: PARC’s team of researchers will work with the engineers, maintenance staff or contractors on site to improve or invent them. With expertise in physics-based sensing technology, our team champions connecting the physical and digital worlds. This is how we are able to produce reliable sensing results that are accurate 95%+ of the time, with negligible false alarms and near-zero missed detections.
The Science of Modeling
Without the correct system model applied to sensing technology, results and recommendations are less likely to hit the mark. Our team will work to make sure sensors are measuring correctly, capturing the data points significant to the desired prediction and matching them to the right system process identifiers.
By using the suite of technologies to store detailed fault-augmentable models, it is possible to perform rapid diagnoses of system behavior over designated time intervals. Through modeling, PARC is able to understand the context of any system and produce the recommendations that are important to maintenance repair operations, improving uptime and transforming the bottom line.
The Accuracy of Prediction
PARC has developed a suite of technologies that maximizes systems’ abilities to predict the need for maintenance, repair or improvement and fully automates prompts which allow maintenance professionals to act in a timely manner.
This capability is light years away from non-automated traditional reactive maintenance practices in which a system, part or component fails and a maintenance professional performs the necessary repair or replacement.
It’s also a step up from preventive maintenance that’s scheduled based on time elapsed rather than on the need for repair or replacement. PARC enables the transition to reliable predictive maintenance, thus initiating the digital transformation to self-adaptive assets, which are highly autonomous.
By improving upon these previous solutions via the integration of AI and IIoT technology, MOXI is able to more accurately predict needs, identify appropriate timing for maintenance to reduce costly down time, and integrate these recommendations into an existing workflow.
Interested in applying PARC’s MOXI, an IIoT System Analytics to your system? Be in touch with one of our experts by filling out the form below.
Additional information
Our work is centered around a series of Focus Areas that we believe are the future of science and technology.
We’re continually developing new technologies, many of which are available for Commercialization.
Our scientists and staffers are active members and contributors to the science and technology communities.