Resource-Bounded Goal Obfuscation

Anagha Kulkarni*, PhD Student, Arizona State University
Matthew Klenk, Shantanu Rane, Hamed Soroush, Palo Alto Research Center

- In an adversarial environment, agents should not reveal their objectives.
- A goal obfuscated plan produces a sequence of observations from which an adversary is unable to derive the agent’s true objective.

Application areas

<table>
<thead>
<tr>
<th>Application areas</th>
<th>Information to be concealed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Planning</td>
<td>Point of attack</td>
</tr>
<tr>
<td>Corporate Strategy</td>
<td>Potential partners during new product launch</td>
</tr>
<tr>
<td>Component Design</td>
<td>Intended use of designed components</td>
</tr>
</tbody>
</table>

Problem Setting

- We consider two agents: an actor, and an observer.
- The actor performs deterministic actions and has full observability.
- The observer can have partial/full observability of actor’s actions.
- The observer knows that the actor has \(n \) candidate goals but in unaware of actor’s true goal.
- The solution involves choosing \(v \) (\(\leq n \)) candidate goals and generating a goal obfuscated plan that is equally consistent with all \(v \) candidate goals.

Example

1. **Actor** selects \(v \)-1 candidate goals using landmark similarity to obfuscate the true goal.

2. Search the state space to obtain equidistant states. Equidistant states have equal distance to all the \(v \) goals.

3. From each equidistant state, perform bounded length belief space search until a solution is found.

4. Observation sequence obtained for the given \(k \) goals: \(< O_2, O_1, O_1, O_1 >\)

A goal obfuscation planning problem is a tuple, \(P_{GO} = (\mathcal{D}, \mathcal{I}, \mathcal{G}, \Omega, \mathcal{O}, \mathcal{R}) \), where:

- \(\mathcal{G} = \{ G_A \cup G_1 \cup G_2 \ldots \cup G_{n-1} \} \) is a set of \(n \) candidate goal conditions, and \(G_A \) is the true goal of the actor.
- \(\Omega = \{ o_i | i = 1, \ldots, m \} \) is a finite set of observations symbols corresponding to the domain.
- \(\mathcal{O} : (\mathcal{A} \times \mathcal{S}) \rightarrow \Omega \) is the observation function which allows either partial or full observability mapping the pair: action taken and state reached to observation symbols.
- \(\mathcal{R} \) is the cost budget of the actor.

To compute a secure goal obfuscated plan:

Step 1: Choose \(v \) goals with high landmark similarity

Step 2: Compute a set of equidistant states

Step 3: Compute a bounded length belief plan by exploring equidistant states

Step 4: Return optimal plan to equidistant state + bounded length belief plan

Cryptography Assumptions

- Adversary knows the agent's algorithm
- Independence of inputs
- Delivery of observations is fair and in-order
- Semi-Honest Adversary

Empirical Evaluation

We evaluated our approach using three IPC domains

Metric 1: The impact of different observation models on the extent of obfuscation.

Metric 2: The trade-off between additional cost and extent of obfuscation possible.

Metric 3: The comparison between run time and plan costs for goal obfuscation versus optimal planning.